
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Comparative Performance and Porting Effort of
HIP and CUDA for an Implicit Monte Carlo Code

Alex R. Long
9/1/2020

2020 Performance, Portability and
Productivity in HPC

Coming to you pre-recorded from
fabulous Los Alamos, New Mexico

LA-UR-20-26679

NOTE:
This is
the lab

color
palette.

Comparative Performance and Porting Effort of HIP
and CUDA for an Implicit Monte Carlo Code

9/1/20 Los Alamos National Laboratory

•  First off, this talk does not address the performance of the HIP porting
effort

• Monte Carlo transport is known to consume a large number of CPU
cycles and I spend a lot of time thinking about this issue

• Our mandate is to be able to run on new machines, my experience
thus far is that porting takes more time than optimizing so plan
accordingly

2

NOTE:
This is
the lab

color
palette.

The CUDA port of the Jayenne IMC library performs
well without much optimization

9/1/20 Los Alamos National Laboratory

• We ported our Monte Carlo transport code with CUDA
•  The lion’s share of the work was isolating code to run on an

accelerator
– Monte Carlo naturally has a lot of potential code paths
– Pull difficult code paths out, isolate core work functions
– After that, removing host code from device functions (std library) took some

time
– Initial performance gains came from using shared memory, eliminating

separable compilation and using constant memory for some data
•  I heard about HIP as a solution for CUDA codes on El Capitan and

was excited to try to qualitatively measure the effort
– Was I excited for petty reasons? The short answer, is yes, yes I was
– I made a decision for performance first, could I have my cake and eat it too?

3

NOTE:
This is
the lab

color
palette.

HIP has some attractive features for a “basic” CUDA
code

9/1/20 Los Alamos National Laboratory

• HIP generates code for AMD devices but is also a “thin layer” over
CUDA for a “single-source” GPU solution

• No need to set experimental CUDA flags for constexpr or thrust with
lambda functions

• Some features of Jayenne that make HIP a good fit (your mileage
may vary)
– Jayenne uses explicit memory management in CUDA (cudaMalloc,

cudaFree) and not managed memory (under development in HIP)
– No logic in Jayenne assumes a warp size (could be 64 in AMD devices)
– No virtual functions inside the transport loop (not supported in HIP)

4

NOTE:
This is
the lab

color
palette.

Some details of the port work: the easy parts

9/1/20 Los Alamos National Laboratory

•  Loaded the ROCM module, it put hipify-perl in my path and I ran
– hipify-perl –i <file name>

• Kernel launch and adding include files was the only change I would
consider more advanced than “find_replace”
– My thrust include paths and functions remained unchanged

• As many codes do, I hide CUDA specific code behind Cmake
configure time macros

• No macros had to change, even the ones for constant texture memory
•  I changed “#ifdef __NVCC__” type checks to “__HIPCC__”
• No checks on __CUDA_ARCH__ in Jayenne so no ambiguity

between device features

5

NOTE:
This is
the lab

color
palette.

Some details of the port work: the hard parts that are
related to how Jayenne works

9/1/20 Los Alamos National Laboratory

•  I saw a hipify-cmake script was also added to the path by ROCM
– Main difference is changing the “find_package(CUDA)” command to HIP
– Our CMake does not use the standard CMake “find_package(CUDA)” type

approach, we instead enable CUDA as a language on a per project basis
•  I only have three object files to make, let’s do it by hand!

– Remove gcc flags (sanitize)
– make VERBOSE=1
– Change compiler in make line to “hipcc”

• Our random number generator, Random123, code make heavy use
of platform specific intrinsics
– Are you shocked that this isn’t very portable?
–  Ignoring instrinisic optimizations, even turning on “__device__” decorators caused a

problem
– No portability solution would have solved this problem for me!

6

NOTE:
This is
the lab

color
palette.

Some details of the port work: the parts you expect
when using new tools

9/1/20 Los Alamos National Laboratory

• All complaints mentioned here are just to point out what does not “just
work” in doing a HIP port
– hipcc doesn’t accept –fopenmp flag in link phase (fixed in latest)
– I ran into a bug in ROCprim with including some thrust functions (fixed in

latest)
• ROCm uses the system gcc to build glibc, this caused problems in

linking to my gcc code
– This problem is fixed by specifying a gcc toolchain when using hipcc for

compiling and linking
• Our code does not currently compile with clang10+ and ROCm 3.5 on

our system is clang11

7

NOTE:
This is
the lab

color
palette.

A comparison of porting efforts: C++ to CUDA and
CUDA to HIP

9/1/20 Los Alamos National Laboratory

•  There is still work to do, as I mentioned, I was not able to run
performance comparisons

•  I successfully ran my simple GPU tests that moves a particle with the
core loop

• A table with some rough numbers for the CUDA port based on the git
commit history of Jayenne and the CDash dashboard

8

Port feature Date
Start code reorganization 06/2017
Separate GPU functions 06/2019
First CUDA kernel call 11/2019
Runs tstRW_Transporter 03/2020
Passes all integration tests with GPU 08/2020

HIP port
is here

NOTE:
This is
the lab

color
palette.

Conclusions

9/1/20 Los Alamos National Laboratory

• Of course, this comparison is not scientific in a number of ways
– Measuring “effort” is inherently difficult
– I’m not able to compare performance to CUDA yet

•  That said, this port took a week of work
– How long would it take to move to KOKKOS? I know where my loops are, I

know where my memory needed on the device is, my code survives a pass
with the NVCC compiler, maybe someone could tell me?

•  The most valuable part of this work is knowing where the code is with
respect to a HIP port
– I can start having conversations about our CMake and how we expect HIP

to work with it
– Someone with more experience in compiler intrinsics can look at

Random123
•  It took me about a week of work to find out “where we are”

9

